DEVELOPING INTELLIGENT SYSTEMS – METHODS, BEST PRACTICE AND CHALLENGES

Prof. Dr.-Ing. habil. Ansgar Trächtler

HEINZ NIXDORF INSTITUT

DEVELOPING INTELLIGENT SYSTEMS – METHODS, BEST PRACTICE AND CHALLENGES

Outline

1. Introduction

- Technologies 2.
- 3. Applications

IFM

Innovation Leap Towards Intelligent Technical Systems

Time

Intelligent Technical Systems...

- ... interact with the environment adapting to it autonomously (adaptive)
- ... manage even unexpected situations not taken into account by the developer in a dynamic environment (robust)
- ... anticipate on the basis of experiential knowledge future effects of influences and possible states (anticipatory)
- ... take into account individual user behavior (user-friendly)

Our Competencies for Developing Intelligent Systems

Intelligent in Technical Systems:

 Concepts for advanced control, implementation of Self-X-capabilities like self-diagnostics, -configuration, -healing

Systems Engineering:

 Discipline-spanning engineering methods, system specification, modularization and integration, simulation and verification

Virtual Engineering:

 Reduction of time consuming and cost intensive real prototypes by techniques using digital mechatronic models

DEVELOPING INTELLIGENT SYSTEMS – METHODS, BEST PRACTICE AND CHALLENGES

Outline

Introduction 1

2. Technologies

- Design Methodology for Intelligent Systems 1.
- 2. Self-Optimization
- 3. Applications

Design Methodology for Intelligent Systems

- Reference process for system design using semantic techologies
- Ontology based representation of solution patterns / solution elements

Design Methodology for Intelligent Systems

- **CONSENS:** language for domain spanning system models
- Automatic generation of behavioral models

Self-Optimizing Control Systems

Classical control system:

- Tight coupling between sensors and actuators
- Limited adaptibility

Self-optimizing control system:

- Adaptation to changing goals in volatile environment
- Robust, anticipatory system behavior

Self-Optimizing Control Systems

3-level control architecture

- Controller: classical control, hard realtime
- Reflectoric Operator: event-triggered monitoring and adaption of the controller
- Cognitive Operator: soft real-time, computationally intensive algorithms
 - (model based) optimization
 - machine learning / scheduling
 - supervision and control of several objectives

HEINZ NIXDORF INSTITUT

Self-Optimizing Control Systems

Highly adaptive, intelligent system behavior:

- Optimal control
 - Dynamic feedforward control
 - Switching between several control laws
- Control based on Pareto sets
 - Situation dependent choice of optimal compromises
- Model-predictive control
- Non-linear State observers
 - Virtual sensors / condition monitoring
 - State feedback control

HEINZ NIXDORF INSTITUT

.....

IFM

💹 Fraunhofer

Self-Optimizing Control Systems Multi-objective Control

Challenge

- Concurrent objectives (cost / quality, safety/ efficiency etc.)
- volatile environment

Model-based numeric optimization

- Calculation of objectives
- Control design

Multi-objective Optimization

 Simultaneous consideration of multiple objectives

Hierarchical Optimization

separate optimization on subsystem-level

IFM

Self-Optimizing Control Systems Objective-Oriented Control

- conflicting objectives
- Pareto set of optimal compromises
- parametrization by weighting factor α

Goal:

- Drive the system toward a desired weighting of objectives (desired α)
- Despite unpredictably changing disturbances

objective-oriented control

- Operates a level "above" the closeloop system
- Considers the current and desired α values
- Updates control parameters to drive system toward α_{des}

Self-Optimizing Control Systems Objective-Oriented Control

1

3

- evaluate objectives based on measurements
- **2** read off α_{cur} using Pareto front
 - compare α_{cur} with α_{des} and compute α_{use}
- 4 read off controller configuration for continuous controller using Pareto set

(Outer control loop: update of objectives)

IFM

DEVELOPING INTELLIGENT SYSTEMS – METHODS, BEST PRACTICE AND CHALLENGES

Outline

- Introduction
- Technologies 2.

3. Applications

- Self-Optimizing Resource-Efficient Industrial Laundry 1.
- Intelligent production machines 2.

IFM

Das Technologie-Netzwerk: Intelligente Technische Systeme OstWestfalenLippe

Self-Optimizing Resource-Efficient Industrial Laundry

Production logistics

Das Technologie-Netzwerk: Intelligente Technische Systeme OstWestfalenLippe

Production logistics

Das Technologie-Netzwerk: Intelligente Technische Systeme OstWestfalenLippe

Intelligent networks

Intelligent production machines

Challenge:

- Changing materials properties
- Varying environmental conditions
- Deterioraiton of product quality

Solution:

- Analysis of dynamical processes
- Identification of materials properties
- Adaptive in-line process control

IEM

Intelligent production machines Self-correcting punching and bending tool

 $\sigma_{FA} < \sigma_{FF}$

Δx Stempelweg

Regelung

IFM

Trends

- Miniaturization of components
- Reduction of admissible tolerances
- High-strength materials

Solution

Self-correcting punching and bending tool with continuous in-line correction

Trendregelung

Intelligent production machines

Continuous forming process

Motivation:

varying raw stock properties, wear of tools, etc. deteriorate product quality

 Goal: Implementation of self-correcting technologies for autonomous control of profile characteristics (R_{1,2} and α_{1,2})

Realisation:

- Model-based design of process control
- Integration of industrial-suited sensors, actuators, and automation hardware

HEINZ NIXDORF INSTITUT

Intelligent production machines Semi-adaptive control of a pick&place-module

Motivation:

- Precise control parameter adjustment difficult due to lacking environmental model
- Requirements for precision and dynamics are violated
- System analysis
 - Realization of data logger via CANopen
 - Effect analysis of relevant features

System optimization

- Modelling and identification
- Model-based Controller design
- Implementation and validation

Tolerance interval of 50 µm is met with full prodution rate

THANK YOU FOR YOUR KIND ATTENTION

Prof. Dr.-Ing. habil. Ansgar Trächtler

Fraunhofer-Einrichtung für Entwurfstechnik Mechatronik IEM

Zukunftsmeile 1 33102 Paderborn

Telefon +49 5251 5456-101 Fax +49 5251 5465-102

info@iem.fraunhofer.de www.iem.fraunhofer.de

