SHM-Systems for Composite Aircraft Structures based on Lambwave Analysis

DLR.de • Chart 2 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Introduction

- Structural Health Monitoring (SHM) based on Lamb waves is a promising method for in-service inspection of aircraft composite structures
- Lamb waves are highly sensitive to structural damages
- Lamb waves can be excited and received by piezoceramics

Introduction

Development of SHM network requires:

- Detailed understanding of the propagation of different Lamb wave modes and their individual interaction with damages
- Use of unique indicators for damage detection
- · Specific analysis and design with respect to the application scenario

DLR.de • Chart 4 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Research fields for SHM Systems

Wave Propagation and Interaction

Investigation of the wave propagation and interaction by using:

- Air-coupled ultrasonic techniques
- Laser scanning vibrometry
- Analytical and numerical methods

DLR.de • Chart 6 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Wave Propagation and Interaction

- Dispersion diagram of Lamb waves in CFRP plates
- Comparison of experimental data with theoretical values

Wave Propagation and Interaction

- Measurement and calculation of Lamb wave phase velocities in CFRP plates
- · Comparison of experimental data with theoretical values

DLR.de • Chart 8 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Wave Propagation and Interaction

- Development and operation of a flexible 3D laser vibrometry platform
- Measurement of the in-plane and out-of-plane displacement of each Lamb wave mode

Wave Propagation and Interaction

- Calculation of time-of-flight using directional phase velocities of anisotropic structures
- Iterative time-of-flight calculation of a discretized structure
- Each element shows individual, directional velocity distribution

DLR.de • Chart 10 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Wave Propagation and Interaction

Lamb wave interaction at structural discontinuities like stiffeners, edges, damages, sensors etc.

- Reflection, transmission, absorption
- Mode conversion
- Diffraction

Damage Detection and Localization based on Reconstruction Algorithms

- Determination of local damage probability based on reconstruction algorithms
- Projection and superpositioning of measured signals by using calculated phase velocities
- Very flexible method, which is suitable for complex structures (Compared to triangulations methods)

DLR.de • Chart 12 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Actuators and Sensors – Robust SHM Networks

- Piezocomposite Technology:
 - Embedding of brittle piezoceramic plates into a ductile polymer incl. flexible electrodes, electrical contacts and insulation
 - Pre-compression allows to apply tensile/bending load
 - Improved damage tolerance and lifetime
 - Electrical insulation

Actuators and Sensors – Robust SHM Networks

- Development of SHM networks in form of semi-finished parts which include piezoceramic transducers, wires and electrical connection
- Integration of the semi-finished parts into the composite manufacturing process (integral manufacturing process, co-bonding)
- Reduction of manufacturing steps (e.g. bonding process, cabling) and costs

DLR.de • Chart 14 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Actuators and Sensors – Robust SHM Networks

- Piezocomposites and cables with stranded cores embedded into rubber
- Vulcanization of the rubber during the curing of the composite structure
- Robust SHM array due to the protection of the piezocomposites and cables by the rubber
- SHM array can be manufactured in different shapes with different transducers

Actuators and Sensors – Virtual Sensors

- Development of "virtual sensors" which allow the design of complete SHM networks by optimizing sensor number, position, form and material properties
- Calculation of sensor signals out of wave propagation measurements acquired by an air-coupled ultrasonic scanning technique

DLR.de • Chart 16 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Actuators and Sensors – Virtual Sensors

- Virtual sensor adjusted to the wavelength of the S₀ mode
- Wavelength of S₀ mode: 49 mm

Actuators and Sensors – Virtual Sensors

- Virtual sensor adjusted to the wavelength of the A₀ mode
- Wavelength of A₀ mode: 13 mm

DLR.de • Chart 18 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Actuators and Sensors – Mode Selective Transducers

- Development of mode selective transducers in order to:
 - Excitation and receiving of particular Lamb wave modes in CFRP plates
 - Reduce the complexity of Lamb wave propagation fields
- · Use of interdigitated electrode design
- Electrode distance correspond to half of wavelength of the desire mode

Monolithic Piezoceramic

Actuators and Sensors – Mode Selective Transducers

- Development of mode selective transducers in order to:
 - Excitation and receiving of particular Lamb wave modes in CFRP plates
 - Reduce the complexity of Lamb wave propagation fields
- Use of interdigitated electrode design
- Electrode distance correspond to half of wavelength of the desire mode

DLR.de • Chart 20 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- Development of a door surround structure with SHM network in order to:
 - Integrate complex SHM networks into the manufacturing process of aircraft composite structures
 - Prove of damage detection algorithms in complex, realistic structures
 - High load levels and high concentration of in-service damages

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- Full-scale door surround structure made from composite material:
 - Length: 5.1m
 - Width: 3.5m
 - Radius: ~3m
- Integration of 584 piezoceramics
- Representative structural components:
 - Skin with two different thicknesses (2mm & 8mm)
 - 44 stringers
 - 4 normal frames
 - 5 door frames
 - 16 intercostals, 2 sills and 8 brackets

Design of the Door Surround Structure without SHM network

DLR.de • Chart 22 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- Skin is made from CFRP prepreg material
- Use of automated fiber placement (AFP) robot
- Layup of two different thicknesses regions (ramp 1:20)

Layup of the Skin Plies

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- SHM arrays are applied on a Kapton transfer film
- Transfer film holds the array in shape and simplifies the lay-up
- Application of 126 arrays (584 transducer) on the wet CFRP prepreg
- Laser projection is used to facilitate the positioning of the sensor arrays
- Skin curing process at 180°C and 7bar within the autoclave

DLR.de • Chart 24 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- Stringer are secondary bonded with film adhesive (150°C, 3bar)
- Frames and sills are assembled with fasteners and shim
- Wiring harnesses with a specific length are pre-fabricated
- Connection between harnesses and transducers by sealed crimp splices
- All 584 piezoceramics survived the manufacturing steps

Manufacturing and Test of Full-scale Door Surround **Structure with Integrated SHM Network**

- Baseline SHM measurements at different temperatures:
 - Lower frequency range (antisymmetric mode): 50...100kHz
 - Higher frequency range (symmetric mode): 150...250kHz
- Introduction of 112 impacts (<130J) using an impactor gas gun
- Ultrasonic scanning of the impact zone to quantify the damage area
- SHM measurements to detect/locate the damages

Impactor gas gun

Door Surround Structure

DLR.de • Chart 26 > SysInt 2016 > Sinapius • SHM systems > June, 15th, 2016

Manufacturing and Test of Full-scale Door Surround Structure with Integrated SHM Network

- Probability-based diagnostic imaging
- Calculate Damage index for each actuator-sensor pair
- Superposition of damage probability for each pair
- Damage probability indicator → colorbar
- Damage location → local maxima
- Damage size → threshold on the color scale

Damage Assessment of a stiffened structure

